

CURRICULUM OVERVIEW

BACHELOR PROGRAM IN ANIMAL HUSBANDRY FACULTY OF ANIMAL HUSBANDRY, MARINE AND FISHERIES UNIVERSITAS NUSA CENDANA

KUPANG

A. OBJECTIVES OF THE DEGREE PROGRAM

1. VISION OF UNIVERSITY

"Global Oriented University"

2. MISSION OF UNIVERSITY

3. VISION OF THE FACULTY

- 1. Producing graduates with integrity, competence and relevance to the development of animal science and technology and the needs of society so that they become agents of change who are able to compete globally.
- 2. Improve the competence of internal resources for the implementation of quality higher education.
- 3. Increase the role of the livestock study program in solving dryland livestock development problems through increased research capacity and innovation.
- 4. Increasing the role of animal husbandry study programs in improving the welfare of the community through increasing the capacity of down streaming and dissemination of science and technology of dryland animal husbandry.

4. MISSION OF THE FACULTY

- 1. Organizing quality education and teaching that is relevant to the development of science and technology in the field of animal husbandry and the needs of the community, especially in drylands.
- 2. Organizing quality research in the field of dryland animal husbandry to develop and disseminate science and technology in an effort to produce human resources that are adaptive and innovative to the demands of science and technology developments and the demands of society and published in national and international accredited journals.
- Organizing quality community service that is relevant to the development of science and technology in the field of dryland animal husbandry and in accordance with the needs of the community.

B. PROGRAM EDUCATIONAL OBJECTIVES (PEO)

Program Education Objectives of the Animal Husbandry Study Program are to produce graduates who become managers, Community empowers, Technopreneurs and Scientists early at the beginning of their career. The program provide opportunity for graduates to be able to: to manage organizations, Capable in organizing, building and empowering communities to increase their economy, developing enterprises in farming based on research and innovation, Able to develop research and innovation in solving problems which related to animal husbandry as well as scientific advancement

The relationship between courses and qualification profile to rich the PEOs is shown in figure 1 below.

C. PROGRAM LEARNING OUTCOME

General procedures of graduate profile formation, learning outcome, and curriculum of study program have been in accordance with the standard (from guidelines of curriculum development, such as Higher Education and Profession Association, KKNI, Accreditation Bureau, and Association Profession of Study Program) as presented in Figure 2 and verified by academic board of faculty. The procedure involves both internal and external stakeholders,

including academic staff, university and faculty supporter, alumni, students, experts, and external stakeholders

Fig. 2. Mechanism scheme of program learning outcome

Learning outcomes of Bachelor degree of Animal Husbandry study program

Area	Code	Program learning outcome	
Attitude	PLOs 1	Uphold the cultural values of the nation and	
		commit to professionalism and ethical values	
Knowledge	PLOs 2	Master the theoretical concepts of science in the	
		field of farming especially in the dry land	
		environment of the islands	
General Skills	PLOs 3	Able to conceptually plan the productivity of farms	
		and increase the added value of farm products	
		through dissemination of knowledge	
	PLOs 4	Able to think critically in solving problems based	
		on valid data and information, responsibly,	
		independently	
	PLOs 5	Able to lead, work in a team and in a	
		heterogeneous and challenging social environment	
Specific Skills	PLOs 6	Able to use technology information to improve the	
		effectiveness and efficiency in planning,	
		implementation and evaluation of farming	
		development activities.	
	PLOs 7	Able to design solutions based on the principles of	
		scientific knowledge to respond to problems and	
		needs in the field of farming of dry land of the	
		islands	
	PLOs 8	Able to implement and evaluate new findings and	
		engineering of farm production based on the	

	principles of effectiveness, efficiency, quality, and
	sustainability

Fig. 3. Mechanism scheme of program learning outcome

Subject-specific criteria are developed based on the classification of Animal Husbandry study program body of knowledge and its PLO during the course determination. The description of Subject-Specific Criteria (SSC) for the Animal Husbandry Study Program is presented below:

Table. 3. SSC of Animal Husbandry Study Program

		SSC (Subject Specific Criteria)		
Attiduce	SSC1	Have gained knowledge of the latest findings in their		
		discipline		
	SSC2	Be able to understand the concepts of identification		
		and safeguarding of quality in their respective fields of		
		work;		
	SSC3	Have the ability to know the essential legal regulations		
		relating to their discipline;		
	SSC4	Be aware of the further multidisciplinary context of		
		agriculture, forestry, food science, or landscape		
		architecture and related fields.		
Specialist	SSC5	Have gained the required knowledge and		
competences		understanding to identify and formulate problems		
		arising in agriculture, forestry, food science, or		
		landscape architecture (which may contain aspects		
		stemming from areas other than their field of		
		specialization);		
	SSC6	Are able to apply different methods orientated on		
		fundamentals – such as mathematical, statistical, and		
		experimental (laboratory) analysis;		

	SSC7	Are qualified to plan and conduct respectively suitable
		experiments, interpret the data, and draw conclusions.
	SSC8	
Social	SSC9	Be able to work efficiently on their own and as team
competences		members
	SSC10	Are qualified to apply different methods to
		communicate effectively with the scientific community
		and the society as a whole
	SSC11	Feel obliged to act in accordance with professional
		ethics and the responsibilities and standards of
		practical engineering
	SSC12	Are aware of the methods of project management and
		business practices such as risk and change
		management and understand their limitations
	SSC13	Recognized the necessity of independent life-long
		learning and are qualified to do so
	SSC14	Depending on the professional field they have
		competences in the fields of management and
		marketing, in particular project management,
		acquisition, personnel management, controlling etc
	SSC15	Are adequately competent in the area of
		communication, e.g. Presentations or moderation

Fig. The relevance between PLO and SCC is presented below:

	SSC1	SSC2	SSC3	SSC4	SSC5	SSC6	SSC6	SSC7	SSC8	SSC9
PLO1										
PLO2		V		V				V	√	
PLO3			√							√

PLO4				√	√			
PLO5	V	<mark>√</mark>	V					
PLO6						V	√	<mark>√</mark>
PLO7	V	<mark>√</mark>	V			V	√	√
PLO8	V	√	V					

PROGRAM STRUCTURE

The contents of curriculum in Animal Husbandry study program are designed to realize the vision, mission, goals, and objectives of the Animal Husbandry Study Program, Faculty of Animal Science, Marine and Fisheries Universitas Nusa Cendana. It is made to meet the expected outcomes, formulated based on input and intensive communication with stakeholders, such as industrial and governmental institutions, and has generated quality graduates. The structure of curriculum has been designed and aligned with the Program Learning Outline (PLO). The details of curriculum structure mapping towards PLO attainment can be seen in Table 5 There is a correlation to the expected competency for each course for the graduates, as given in the competency map (Figure 5). In the curriculum mapping, every course supports specific competencies. The curriculum of the programs has undergone several reviews. These reviews are conducted to ensure the compliance and relevance to the development of science, regulation of the university and professional associations, the suggestion from alumni and stakeholders, and job market requirement. The process of achieving the expected qualification profile is carried out through the main program lecture activities with a minimum number of 146 credits equivalent to 233.6 ECTS. Learning activities can be completed within eight semesters but no more than 14 semesters. Curriculum structure of Animal Husbandry study program consists of 5 groups of course (Group of General Courses or MKU, University and Faculty characteristic courses, Study Program features consist of Compulsory Courses and Elective Courses) and MBKM that must be completed during a minimum study period of 8 (eight) semesters and a maximum of 14 (fourteen) semesters with a credit unit range of 146 credits.

Courses	Total (in Credits)	Percentage (%)	Total (in ECTS)
General Competencies (Common Courses)/ University and Faculty Courses	10	6.85	16.0
Fundamental Courses (Basic Courses)/ Field of Study Knowledge	13	8.90	20.8
Academic Core Courses (Program Core Courses)	104	71.23	169.2
Electives/Enrichment Courses (Enrichment Course)/Off- Campus Credit Transfer (MBKM)	10	6.85	16.0
General Competencies (Common Courses)/ University and Faculty Courses	3	2.05	4.8
Final Project	6	4.11	13.1
Total	146	100	239.9

As mentioned previously, to earn a B.Sc. degree in Animal Husbandry, a candidate must pass at least 146 credit hours, consisting of compulsory and elective courses, as well as a final project (Thesis or Skripsi in Bahasa Indonesia) based on research in Animal Husbandry.

The course distribution is hierarchically arranged, which illustrates that the courses of the semester above are an extension of courses from the previous semester. The distribution is based on the relationship between concepts, levels of knowledge, and course mapping that some of the upper semester courses have the preconditions in the previous semester. B.Sc. guarantees a balance between courses offered by the study program. The 8th-semester students no longer take theoretical courses but take thesis for six months. For this reason, students are expected to complete their degree in the 8th-semester.

The curriculum is developed through a series of processes from the body of knowledge up to curriculum structure (Table 4). The curriculum structure will guide students to achieve competencies that have been set and meet the PLO of Animal Husbandry Program. Intended competencies that students can acquire after taking one course can be seen from the course module. Courses are designed from the core subject matter.

Table, Body of knowledge in Animal Husbandry Study Program

Code	Subject matter	Description	C	ourse
SM1	General Basic	Includes knowledge	1.	Religion
	sciences with university	of basic knowledge	2.	Pancasila
	specification	for the formation of	3.	Citizenship
		attitudes and	4.	Bahasa Indonesia
		knowledge of	5.	English
		various island	6.	Anti-corruption
		dryland cultures		education
		developed in NTT	7.	Drylands livestock
		and anti-corruption		system
		education.		
SM2	Basic sciences in	Covers basic	1.	Mathematics
	Animal Husbandry	knowledge and	2.	Biology
		general skills in	3.	Chemistry
		animal husbandry.	4.	Biochemistry
			5.	Introduction to
				Animal Science
			6.	Statistics
			7.	General economics
			8.	
SM3	Nutrition and feed	Covers the science of	1.	Feed crop science
	knowledge and	the nutritional	2.	Animal nutrition
	technology	requirements of all		science
		types of livestock at	3.	Ruminant nutrition
		each growth period	4.	Poultry and non-
				ruminant nutrition

		and their	5.	
		physiological status.		
SM4	Knowledge and	Covers the science of	1.	Livestock breeding
	technology production	production in various	2.	Poultry production
		types of livestock	3.	Beef production
				dairy production
SM5	Reproduction and	Covers the science of	1.	Animal physiology
	Breeding knowledge	reproduction,	2.	Animal anatomy and
	and technology	breeding, and		Histology
		fecundity of various	3.	Livestock
		livestock		reproduction science
			4.	Biotechnology
			5.	
SM6	Animal products	Covers the science of	1.	
	knowledge and	processing the		
	technology	results of various		
		types of livestock		
		products		
SM7	Livestock	Covers the science of		
	socioeconomics	livestock business		
	knowledge	development from		
		upstream to		
		downstream		
SM8	Big data literacy	Covers the science of		
		business		
		management of		
		various livestock		
		commodities as well		
		as methodology and		
		experimental design		

SM9	Livestock climate	Covers the science of	
	change mitigation	livestock's	
		relationship with	
		their environment	
		and risk reduction.	
SM10	Nutrition and Feed	Includes knowledge	1. Feed industry
	Technology	of feed cultivation,	technology and
	Applications	preparing rations	process
		from local feed	
		ingredients, feed	
		processing and feed	
		industry	
		development.	
SM11	Production	Covers the field of	
	technology	business	
	applications	development science	
		of all livestock	
		species that can be	
		developed in a	
		region.	
SM12	Reproduction and	Includes the	
	Breeding technology	application of the	
	applications	science of	
		reproduction,	
		breeding, and	
		fecundity of various	
		livestock that can be	
		developed in a	
		region.	

SM13	Application of	Covers the science of	
	livestock product	processing various	
	technology	primary livestock	
		products.	
SM14	Application of socio-	Covers the	1. Livestock
	economic knowledge	application of	entrepreneurship
	in livestock business	knowledge on	2.
		livestock business	
		development from	
		upstream to	
		downstream.	
SM15	Final Project	Covers areas of	Field practice, pre-
		interest and study	thesis seminar,
		including: PKL,	community service
		KKN, seminar, thesis	project, thesis,